Bernstein polynomial and discontinuous functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

Iterated Bernstein polynomial approximations

Iterated Bernstein polynomial approximations of degree n for continuous function which also use the values of the function at i/n, i = 0, 1, . . . , n, are proposed. The rate of convergence of the classic Bernstein polynomial approximations is significantly improved by the iterated Bernstein polynomial approximations without increasing the degree of the polynomials. The same idea applies to the...

متن کامل

The Trigonometric Polynomial Like Bernstein Polynomial

A symmetric basis of trigonometric polynomial space is presented. Based on the basis, symmetric trigonometric polynomial approximants like Bernstein polynomials are constructed. Two kinds of nodes are given to show that the trigonometric polynomial sequence is uniformly convergent. The convergence of the derivative of the trigonometric polynomials is shown. Trigonometric quasi-interpolants of r...

متن کامل

Transformation of Chebyshev–bernstein Polynomial Basis

In paper [4], transformation matrices mapping the Legendre and Bernstein forms of a polynomial of degree n into each other are derived and examined. In this paper, we derive a matrix of transformation of Chebyshev polynomials of the first kind into Bernstein polynomials and vice versa. We also study the stability of these linear maps and show that the Chebyshev–Bernstein basis conversion is rem...

متن کامل

The Bernstein polynomial basis: A centennial retrospective

One hundred years after the introduction of the Bernstein polynomial basis, we survey the historical development and current state of theory, algorithms, and applications associated with this remarkable method of representing polynomials over finite domains. Originally introduced by Sergei Natanovich Bernstein to facilitate a constructive proof of the Weierstrass approximation theorem, the leis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2013.10.024